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ABSTRACT

This paper shows how to calculate the terms of a semiclassical (WKB)

expansion of the quantum—mechanica l propagator corresponding to the quartic

anharmontc—oscillator potential , V = mw 2q2/2 + >tq4/4. This nonperturbative

treatment expresses each term in the series as a path integral , which is then

evaluated in the framework of a formal ism, introduced by C. DeWitt-Morette,

which does not entail the usual time-slicing operation followed by a limiting

procedure. The Gaussian measure used absorbs all the quadratic terms tn  the

expansion of the action functional about a classical path. The covariance of

this Gaussian measure is the Feynman Green function of the small-disturbance

operator of the system. This function can be obtained by varying the constants of

Integration in the classical solution , and therefore the coefficients of the

expansion depend only on this classica l solution. If the latter is chosen to

be the one which tends to Its harmonic counterpart when )
~ —4 0, then it is

seen that the propagator also tends to its harmonic counterpart when ~~ —p 0.
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I. INTRODUCTION

The one-dimensional quartic anharmonic osci~lator is a particle of mass

m in a potential given by:

V( ~~~ ~1 ._i ÷ ~~~~ (I)

It is an important model in physics as a prototype nonlinear field theory.and

has generated a great deal of activity in recent years for several reasons.

First, it is a simple example of a perturbation which causes the associated

quantum-mechanical quantities to be non-analytic in the coupling constant )..
Therefore , the usual perturbation series in powers of the coupling constant

are divergent, although it has been shown2 -that the Pad~ approx imants of the
Rayleigh-Schr~dinger series for the energy levels converge to the correct

elgenvalues of the Ham i l ton ian , which has a positive-definite spectrum for
)~
) 0. The anharmonic oscillator is also the simplest nonlinea r interaction

which still yiel ds plane—wave periodic solutions in the associated

field theory, and even admits of a restricted superposition principl e3.

While the energy spectrum has been studied rather extensively2’4’5, the

pro paga tor K ~ <q~Pt~Iq~,t~) , or probabflity amplitude that a particle at

at time ta will be at at time tb~ 
has not. The purpose of this paper is

to show how to calculate the terms of a semiclassical (WKB) expansion of this

propagator ( in powers of 4~). This treatment, of necessity nonperturbative

since it does not hinge on any expansion i~ powers of A , expresses each term

in the series as a path Integral. The latter is then eval uated In the framework

of a formalism where the usual approach of time—slicing followed by a limiting

— _ - - - - -
~~ -- -- _ _-cs —— — . t r . . a .  ~~~~~~~~~~~~~~~ -.--_.---.---~
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procedure is replaced by a more tractable definition , introduced by C. DeWitt-

Florette6, which greatly simplifies calculations. This approach enabl ed us to

systematically generate all the terms in the semiclassical expansion , which

represents some progress over previous studies of approximating the anharmonic

oscillator propagator by path-integral techniques (Lam7, Sarkar8, Mathews and

Seshadri9).

First, the classical system is studied: the classical paths joining two

fixed endpoints are calculated and the limi t of zero coupl ing constant Is

discussed. Then, the classical action and other elements of the WKB expansion

(Jacobi coninutator, Van Vleck — Morette function, Feynman ’s Green function) are

derived explicitly, and their connection with the small—disturbance equation

investigated. Finally, the path integrals constituting the terms of the WKS

expansion are exhibited and reduced to definite integrals over known functions,

first for an arbitrary potential , then for the anharmonic oscillator .

II. THE CLASSICAL SYSTEM

The Potential

The potential , given in (Ii-. is sketched below for X >0 and >~ <. 0.

/
~ 

/
/ 

A

~~~0
FIgure 1. The anharmonic oscillator potential V(q) = mw2q2/2 + )~q

4/4

x2/2 + x4/4; y V(q)tA1 /m2~~
4, ~ q i~_~m½ j .  

- ~~~±~~ _ “. ~tr ~~~~~~~~~~ 
a.S. -__ _ ~~~ - - — —



The potential wel l is always present for ,\ < 0, so there will always be

harmonic motion in some neighborhood of the origin . As I~ i decreases , the
wel l gets deeper and deeper, the maxima go higher and higher , and the points
where the potential crosses the horizontal axis are rejected farther and far-

ther. The drastic change In the shape of V as A changes sign is the cause for

the nonanalyticity in ,4 . For A ? 0, there will always be a stable ground

state, whereas for ?~. < 0, the ground state is unstable , as there is a finite

probability for the particle to “lea k out” of the well. The failure of pertur-

bation theory is due to the fact that at large distances the q4 term will always

dominate the q2 term, regardless how small ,~~ is.

Dynamical Equation

The dynamical equation for the classical path q~(t) is:

~ + 
~~~~ ~

-
~: ~ (i)

It can be solved in terms of the (biperiodic) elliptic functions. Our source for

the latter is Byrd and Friedman ’s handbook10. We choose the follow ing form for

the solution of (2):

ij (t) L~ Lf l  [21(~ -c- ) 
-~ 

1:~ ~i1 
~ 

(3)

where

~ 
((~~~~L

/ A

This corresponds to the case where the particle is released at at time t—t~
with no initial velocity. (For simplicity , we take the mass m equal to 1; It
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can always be restored by repl acing /~. by A/rn). Note that the modulus k

lies always between 0 and 1/ ~1 ( 0.707...). If we take the modulus k and

the phase to to be our constants of integration, we get:

~~~ L 
,
~

]. (
~)

Class ical paths

The class Ica l paths of interest for the calcula tion of the propagator

are those for which the initial and final positions are specified:

~ 9~. 
(f , (~~)

Substituti ng these conditions in (4) yields the relatioship between the set

(k ,t0) and the set (q~~q~):

- (~) 
w (t~1-t 0) ± c.i~~-’( % -,

/ 
- (c)

( is) w( 1~ -~0) ±~~~(~~ 4~) ~
where n and n ’ are integers ,

‘1 / 2k2~~ (‘)
— 

,~ ( r _ 2 .*1) 
)

and K(k) is the quarter—period of the cn function. Subtracting (5a) from (5b)

yields the final transcendental equations giving k in terms of and

_ _ _ _ _ _ _ _  .. . -
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z) 4 ~ N K ( A~, ~~~
Yi_ z i~

z -

where any combination of signs is permitted, T
~~

tb - ta) N is an integer, and

~~~

Equation (7) must be solved graphical ly for k (t0 is then determined, for
example, by Equation 5a). Since cn~~u is defined only for u~~[-1,1] , we must 

—

have 
~~~ ,~~~ 

q,~ 
and~q~( ~~

. q,~
. Thus , in addition to the upper cutoff ½ on k

2,

we have a lower cutoff:

k~~ ~ k~ ~

where

_ _ _ _ _  - _ _ _ _ _ _ _~ç •,~ / 0< -

f Li)

Note that cn ’ is always positive. It monotonically decreases from cn ’(—l) =

2K(k) to cn~~(1) = 0, with an inflexion point at (0, K(k)).

A sample graphical solution of (7) is shown in Figure 2, for L~
) = I =

= 1. The cases = 0.001, 0.5, and 1 are shown. The curve

intersects (.
~ (k2) once , twice, or not at all . Each intersection

gives the modulus k for a possible classical path such that q(t~) = and q(t~)

= There comes a point where each of the curves (f(k2) + 4NK(k) (one for
each N) Intersects wT/J 1-2k

2 twice for each N >N0. Therefore, there is
always a countably infinite number of paths, with a cluster point at k

2 
½.

_______________________________ ____________ “- - -_-~~~~~~- -- - — - ——--,.~~~ —~~ ---——-- -.- - -~~~-- - -— -C- ----
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Figure 2. Classica l paths for the anharmonic oscillator. Each intersection (circled)
gives a value of k which corresponds to a classical solution of the dynamica l equa—
tion for fixed—endpoint boundary conditions.
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The higher the k, the higher the amplitude of the corresponding path (as revealed

by Equation 4). -_

Behavior as A— 0. We shal l be particularly concerned with the behavior

of our expressions as )
~ approaches C. What happens to the classical solution

as -—
~ 0? For initial boundary conditions , it appears, accordi ng to (3), that

we retrieve harmonic motion: i ndeed, as )~. —~ 0, k —~ 0, -Q —) CA) , and

cn —)cos. However, for other boundary conditions , it appears, according to (4),

that we have a t/ f~ singularity as A — ~ 0: indeed , for arbitrary values

of the constants of integration (say k2 = 0.3 and to = 2 seconds), (4) indicates

that q~(t)#.i t/4~ as 
~ —‘~~ 0. Is harmonic motion i rretrievable then as a

limiting case?

The answer is no. The reason is that only physical boundary conditions

(such as position and velocity at certain times) are acceptabl e~~. k
2 

= 0.3 is

not a physical boundary condition. When the latter are inserted , k will depend

on ~ in such a manner as to make at least one classical path q~(t) reduce to

harmonic motion when A -~ 0.
In the case of endpoint boundary conditions , (4) shows that the only way

that q~(t) can retain its constant , preassigned values at ta and tb is if

goes to 0 as fast As A . The ratio k2/~ 
. is theh an arbitra ry constant A ,

which may be dependent on ~ , and (4) becomes q~(t) = AcosL (t—t0), which i s

harmonic motion. Figure 2 shows that as ,~ approaches 0 there is always one

solution k2 which also approaches 0. This solution , which we call q~0(t)~ is

the lowest—ampl i tude (or lowest—energy) path, and coincides , when )~ = 0, with

the (generally) unique harmonic—oscillator path between the two fixed endpoints.

The other paths correspond to val ues of k which do not go to 0 wi th )
~ 

, and 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - - - — - ~~~~~~~~~~~ - -~~~~~~~~~~~~ - - _ ~~~~~~~~~~~~~~~~~



hence their ampl itudes increase without bound as —~ 0. Their graph becomes,
in the l imit, a set ‘~f parai’el lines perpendicular to the t—axis , one of which

going through ta and the other through tb.

Our semiclassical expansion of the propagator will be about this regular

path q~0(t). Since all the coefficients will depend , directly or indirectly, on

~~ 
alone, the anharmonic propagator will tend toward the harmonic propagator as

the coupling constant tends to 0.

Classical action

The classical action (or action functional evaluated at a classical path )

for the anharmonic oscillator is needed for the WKB approximation . It is given by:

s~ f 
b 
L (

~ c , ~ c +J ,+~~~
~
:4

t

J 
h

p 
~~C

(
~~
) ~~~~~~~ ~~

Using the integrals 312.02 (p. 193), 361.02 (p. 212), 312.04 (p. 193) of Reference

10, and the formula

— £ (~~~~~

‘
-
~~~~~~~ 

—

~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~ / 
(‘i)

Lderived from formulas 116.01 (p. 13) and 123.01 (p. 23) of Reference 10] , we

obtain the answer:

A

L
- - - - - - _ -  - - .  ~~~~~~~~~~~~~~~~~~~~ —i- _ . ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- -
~~~~~~~~~

- 
—- 

~~~~

_ _ —
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)0

‘~ 3 i
Lt ~) -( ~~~T ~ 

_ _ _ _ _-c 3~~\11~~2~~t ~~V !-2i~~~
) 

~~~~~~~~ 
(~~)s~~ &~~.

~~~~c i  

~i_~&z ~~~~~~~~~~~~~~~~~~~~~~~~~ (q)

wk( .
~~ )(2-3)~~~ T

~.nere Ua/b~ L4
~ 

(ta/b -

Behavior when ~ —~~ 0. Let us look at the behavior of S~ as ,.~~ 
—

~~~ 0 along

the path 
~~~~ 

where k 2 —p 0 as ~ -~~ 0 such that k2/ ) .  is a constani~ Using
— the fact that E(u) = u + 0(k 2), we easily see that S~ is regular a-~ A =0 ,

and reduces to the classica l action for the harmonic oscillator.

III. THE QUANTUM SYSTEM

The Small-Disturbance Equation

Just as the classical system is dominated by the dynamical (or Euler-

Lagrange) equation , the quantum system is domi nated by the small-disturbance

(or Jacobi) equation. The latter is the equation satisfied by a small variation

in the classical path , obtained , for example , by a small change in a constant

of integration , such as the total energy or an endpoint. The small-disturbance

equation is studied in more detail in Appendix A and in References 1 and 6c.

For the anharmonic oscillator , it is:

-

~~~~~~~ 
(‘o)

Solutions of the small—disturbance equation

Solutions of the small-disturbance equation can always be generated by

differentiating the classical solution with respect to a constant ‘f integration.
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I’

This simple procedure was known to Jacobi ’2, but it seems to be sometimes forgotten

today, as one still finds attempts at solving the equation directly; for example,

Sarkar8 has undertaken this very difficult task for the anharmonic oscillator

(Equation 10).

The functions we will need for the path-integral treatment of the propagator

are the Jacobi commutator J(t ,t’) ,  the Van Vieck - Morette (VVM) function

M(ta~
tb)~ 

and the Feynman Green function G(t,t’). Their expressions are given

below , followed by their definition and derivation.

Jacobi commutator

Ji~&,t’) ~ ~~ 
i.~ iL 

,
~~~ 

~~ ,~~~ c~s u.~ •

r - i / ~ ~~~~ 
.
~
-. 

~~~~~~~L ,_ 2~,t ~~~‘6.”~t’ 4~~.i~8w’~w - J  1 2 ~~~ Ch)
E (u. ‘... 

~~ ~~~~ c~ LA ’ 

- 

S bi U. CJA

4~ 2. k’~~’ 
d~~ LA ’

- where
~~~~~.. 

_ _ _ _ _  

~~‘ ~~t-’-t~) ~~ -
— 

v’72 ~~ ~- 
— 

V’iii~ 
‘

VVM function

M ( t a~
tb ) = [J(t 8,t b)] -1 (i~~

Feynman ’s Green function

G(t,t’) = J(t ’
~
ta )J(t b~

t ) Y ( t _ t ’ )  + J(t Ita )J(t b~
t ’ )Y( t ’ _ t)  

. (/3)

J (t8 tb)

- - - .-
- _ ~~- - - --- ~~~~~~~~ - - - - - -~~~~~~~~~~~~ - - ---_- ,---~~~~~~

-- --- --~~~~-~~~~~~~~~~
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Definitions and derivations

The Jacobi commutator. This function J(t ,t’) of two variabl es can be defined

as follows: the unique, retarded Green function of the small-disturbance operator ,

sati sfying

{ - ~ ~9 ( ~~] 
G(~ ,(’) ~ 

(
~~- ( hf )

is G(t ,t’) = J(t,t’)Y(t—t’), where Y(x)E 1 for x,0 and 0 otherwise. J(t,t’) is

antisynmetric and satisfies the small—disturbance equation in both t and t’. It

is called the commutator because, as shown in Appendix A , it can be written as a

Poisson bracket of position at different times with respect to Initial (or final )

position and momentum ; when the system is quantized , this expression becomes the

comutator. For example , for initial boundary conditions , we have:

- ~~~~~~ 
(
~~(k

’) 
- 

~~~~~~~~ 
(i~

•
~ L~~~~~ ft)

~~ 

-

~~~~, 

‘

~~ 
c
ii, ~ (i c)

~~~~~ 
( i- )

, ~ (L’)~ ~~(‘•f~,,j~!.:)
For any two convenient constants of integration 

~
( and we can write the

commutator as (see proof in Appendix A):

_ _ _ _  _ _ _ _ _ _  — _ _ _ _  _ _ _ _ _

5(.~ f~’) = ~~~~~ (ic)
— 

‘

~~~ 1~ 
(~t~ ~ 

(t)~
‘
~

o(I ~~O(~

(or a similar expression with tb replaced by ta)~ 
where Pc(t) is the classical 

~~ —~.-_ — 
-
5- - —5- 5-- -5-- -5-- -- -— __~ss~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~

- -  _________________________________________
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momentum (equal to 
~c (t) for the anharmonic oscillator). We will use this formula

with q~(t) given by (4) and ‘~(
‘
~ = k, X

L 
= to. The velocity is given by:

~~
I-2~~~ 

V A

where u is defined in (11). The formulas for differentiating the elliptic

functions with respect to the modulus k are found in Reference 10 (710.51-3, p.

283). Since the argument of the elliptic functions also depends on k, the chain

rule must be used to evaluate 5�q
~(t )/? k and i-.

~ c(tb)/~~
k. We obtain:

C4~4~i.. 
~

5_

~~~~~~~

- _ -
.) ~~~f l ‘A jZLC~~-L)

‘~ A ( _ i ~~~~ 2)

The denominator in (16) is calculated to be:

~ 
‘

~~
‘

~~ ~~ — ~ ‘1.: (t~~ ~~~~~~~ 
— 

2 u~.k
- - 

~~ (
~~W)3

These formulas, along with (8), lead us to the sta ted ex press ion (11) for J( t,t’).

We see that for = i.e. when k2 goes to 0 with ~ , we have E(u)—~.u,

dn u —~ 1, sn u —~~ s in u, cn u -~ cos u, u-,c4)(t—t0), and J(t,t’)_ & 4stni.iJ(t’_t),

wh i ch is the harmonic-oscillator commutator function.

The VVM function. The WKB approximation to the propagator is given by the

well-known formula:

- - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~
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i Lj .

(M/2
~~~~~~
)
~~~~~r 

(~ S~/~~) / 
((7)

where

M _ _ _ _ _  
(t ’i’

~)
c ’i s~. ’j ~

cI
‘t

_
\

is the Van Vleck - Morette function. The second expression for M, which will be

used in the evaluation , uses the fact that ‘
~
.‘‘& / c -~i.~, 

.
~-j~(f~) (t~), ~

Therefore, to get M in terms of k and to we must use the chain rule:

M — _ _ _ _ _  _ _  - ~~‘~~
t~) ~~~ (~q~

• 

~~~~~~~~~ 
c~

In or der to ca l cu l ate M, we must express ‘ L-~~~ and ‘~
1
~ ~~~ in

terms o f 
~~~~~~ / c-i. , 

‘
&

~~i,~ / ~ k , , etc. Since we must have

H ~ t:~
(
~ ~~~ ~)‘

where

k U

& ‘..J!’ ‘_L~ ‘1
5. .

we can easily solve for the u’s in terms of the k’s, to get

- 
— 

— I
- 3 ~~~~ ~~

- —~ — - - - -  5— - — -  ~~ - — - ~-~- — - ~ . ~~~~~~~~~~~~~~~~ ~~~~ ~~~~- — ~~~~~~~~~~~~~~~~~~~~ -— ~~~~~~~~~ 
- —
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where k1k4 
- k2k3. Substi tuting this result in (19) and comparing with

(16), we see that we get the value of M stated in (12), namely M =tJ(taPtb)]
’.

Feynma n ’s Green function. Feynman’s Green function G(t, t ’) ,  satisf ying
• (14), is the unique Green function of the small-disturbance operator which

vanishes at both endpoints . It is important for our treatment because it is the

• covariance of the Gaussian measure used to express the propagator as a path

integral. As was stated before (and proved in Appendix A), G(t ,t’) J(t,t’)Y(t—t’),

with J as in (16), satisfies (14). The function

6 t , ~‘) ~~~, ~
‘)
~~ (( ~

) 
~ 

~~ 
(
~~ ~ ‘)

J (
~~~,t~~)

is also a Green function, since the addition to G(t ,t’) is a homogeneous solu—

tion of the small—d isturbance equation in t and t’. Further , G(ta~
t’) = G(tb,t’)

= 0. Therefore, G(t,t’) is Feynma n ’s Green function. To put it in the form given

in (13) requires use of the identity

R ~ ~~~~~ ~
(
~~~) -

~~ ~~~~~~
easily proved by using (16).

IV . WKB EXPANSION OF THE PROPA GATOR BY PATH INTE GRALS

- Arb i trary Potential

The framework for a WKB expansion of the propagator by phase-space path

integrals without limiting procedure was set in an earlier paper14 and w i l l  be

only briefly summarized here. For a simple Hamiltonian of the form p2/2m + V(q,t)

cons idered here, the phase-space path integral becomes a configuration—space path

L ___ 
~~

_ 
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integra l, since the momentum—dependent terms are rolled i nto the measure and

only position-dependent terms remain to be path-integrated. The first step Is to

expand the classical action functional about the classical path q~( t) :

S 1~~~~] S~ ~ 
~~ !V~~

-v
~~~~

]
~

-
~~~~~~~~~~ 

~~ J ~~~~~~~~~~~~~
where

V
t
~~ (

~~~) 
~~~

- V (c~, / ~~c~~~~. )

I ~~~~~~ , and x E. , the space of paths such that X(ta ) = x(t b) = 0. The
classical action S~ become s part of the WKB approximation,K~,~~, and the quadratic

terms are rol led into the Gaussian measure , leaving the sum term for path integra-

tion. The result is: -

K ~~~ J ~~~~~~~~ ~ ~ 
V~~~( ( )  (ao)

where the measure w0 is defined by its Fourier transform:

• ~~ ‘~ 
(
~;~ ~ ~ )~~ ~ I\

• G(t ,t ’) being Feynman ’s Green function defined earlier and )
~ 

being a bounded

measure on the time-interval ~ is given by (17). The exponential In (20 )

can be expanded to yield:

- ~ ~~~~~~~~~ ‘SS~- • - - - —  -~~ -_ S~ S -—— 5- _________
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K = f ) . 
- -

~ ( J - ~ ~~~~~~~~ J ~~~~
~~

•‘ 
~~~

. 

~ T~ 
“~~

‘
~~~ ~~~~~~~~~~~~

~~~~ V~~( t~) f  x
’1’ (~~~ .~ 

~~fl~~~~~~
)  ~~~~~r (

~)]
To evaluate the path integral , we need the moments formula [5ee , e.g., Reference 15~

C’ -
~~~~ 

,- ~~~
-

f ~ ~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~ ~~~ ~~~~~~

‘ G (
~ ,~~~ ~~G (~~~ ,~~~

~~~~~~~~ ~~~~~~~~~~~~~~~~~~~ 

~~~~~~~~~~~~~~

where denotes the sum over all di fferent combinations of different indices

i1, with 
~ 
i,,i2....,i~

’
\ ~ 

1,2,...,n) • There are ( 2m— 1)!! ( 2m— l)(2 m— 3) .. .

5.3.1 terms in all for n = 2m. 16 -

Thus , we see that -h comes in the expansion with power ½(n,+...+n~) — J,
which is always a positive integer , since each n

~ 
is at least 3. This proves

that (21) is indeed an expansion in powers of ‘h, and we can write:

1< 
~ 

I ~~ 
~~~~~~~~~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~ 

(
~~~)

where the K 1s are ordinary finite-dimensional integrals over the time—interval T.

Polynomial potentials are best suited for this scheme, since the expansion of

the action terminates at some finite n. However, it is important to note that

regar dless of the poten tial each term i n the WKB expans ion ( coef ficient of 4~ )
is always a terminating series. For example, Inspection of (21) shows that the

first (post-WKB ) term is , for arbitrary potential:

- - - 
:: ~_ 5

- —- 5 _ ... _ 
~~~~~~~~~~~~~~~~~~~~~~~~~ - ~~~~~~~ ~~~~~~ ~~~~~~~~ - ~~~~~~~~~~~~~~~~~~~~~~ 45’~~~~.•. 

- _ ~~~~~~~~~~~~~~~~~~~~~~~~ — - _____________________
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~~ J ~ ~~~~ c\~ -~ 

~~ (2~~~

-

~ 

-
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~~~~~~~~~~~~~~~~ 

C~k 
~~

and the moments formula gives :

T~~ I V (~ ) (~,t)~~ 
(i c)

+~~~~

Let us study the structure of the coefficients K~. In general ,the j = 1
term in (19) is:

(j )~~ 
f 

~~ V~~~~~(~~~~~~
J 

x~~(~~) K ~~~~x~

J \~~ t 2~~~) (~~~~~ 
~~~~~~~~~~

~~~~~~ 
p- ’. 2 ” ..

~
-.

For arbitrary potentials , this is an infinite series in- fi with no constant

term. Similarly, we find that:

- 
a) In the ser ies for j = 2, the n1 = n2 = 3 term is the term proportiona l to

f~, and the three terms n1 = n2 = 4; n1 = 3, n~ = 5; and n1 = 5, n2 = 3 are the

one propor tional to i~2. All the subsequent j series start out wi th ~f~1( for k~ 2.

b) In the series for j = 3, the three terms n1 = n2 = 3, n3 = 4; n1 4,

n2 = n3 = 3; and n1 = n3 
= 3, n~ = 4 are tt~e onl y ones proport iona l to ~~ and

the n1 
= n2 = n3 = 4 term is the only one proportional to

c) In the series for j = 4, the term n1 = n2 
= n3 = n4 

= 3 is the only one

proportional to

d) The series for j = 5 starts out with the term.

Thus , we can write the term proportional to4~
2 in the expansion:

- - - — 
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t 
~~~~ ~?t ~-; ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

— ~~~~~~~~~~~~~~~~~~~~~~

f~~f ~~~
‘ 

~~~~ ~~~~ v~
3 1) v (~ )V ~ fr3) .

•fx~O~) x’(~~)~~(t;) Jc~(x)

+ 

~~ 
f ~~~~ V~~(k ~1) ~~~~~~~~~~~

•f ~3 (~,)x 3
t x S ( 3) x 3 (+~ ) 4~r(x )~

(21)

and the moments formula (22) gives the value of the path integrals in terms
of  Feynman ’s Green function and the classi cal path .

• A i,plication to the Anharmonic Potential

The anharmonic oscillator potential , given by (1), is V(q) = m t~
2q2/2 +

A q 4/4. The first-order correction to the ~KB approximati on is then given by
(25) :

I _________________________
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K 1 ~~~~~~~~~~~~~~~~ f~~(t ~ ) c~ ~ ~A~ J ~ k ( ~ S ’ ~~(~~~~~(5) .
II- T i-2

- 

. 

x 
~~3 ~~

({ ,~)~~~ ,s)6(~,s) 4 2 (z~ )

where G(t ,t ’) is given explicitly by (13) with J given by (11) and q~(t) by

(4). The resulting integrals over the elliptic functions are all well-known

and of the type tabulated in Reference 10. Higher-order corrections can be

generated at will , although they generally involve a large number of integrals.

The WKB approximation is given by (17), with the classical action Sc given by

(9) and the VVM function M given by (12), with J in (11). Therefore, every

function entering the semiclassica l expansion of the anharmonic oscillator

propagator has been explicitly calculated , and the definite integrals giving

the coefficients of the expansion have been explicitly exhibited. It is pointed

out , again, that this treatment is nonperturbative , since the functions in-

volved in the terms of the expansion , for example 
~ 

and G in (28), depend

implicitly on . This exampl e illustrates the power of path integration

without limiting procedure.
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where (f (x 1,x2,x3,x4 ) L.f (K.x), K being an arbitrary four—vecto r (plane—

wave solution). The elliptic functions which are solutions of this equation
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linear equations: if an elliptic cosine (cn) with a certain modulus k1 is a

solution , and if an elliptic sine (sn) wi th another modulus k2 is also a sol u—

H tion, then the linear combination (cn + i s~) is also a solution, but the

common modulus k
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11. We can better understand this question of physical boundary conditions

from the simpler example of a particle in free fall with friction taken into
~

- account. The dynamica l equation is x = -(g + k~), with solution x(t)  = —gt/k

+ Ak 2e~~
t + B, where A and B are constants •of integration. When k— ~’0 , we

expect to retrieve free fall: x(t) = —gt2/2 + v0t + x0. Instead , we fi nd a

“singulari ty” at k = 0 if A and B are numerically specified. However, numer ica l

specification of A and B does not constitute physical boundary conditions.

Physical boundary conditions , suc h as x ( t0). = x1~ and ~(t0 ) = v0, always make

A and B depend on k in such a manner as to make the solution , [namely, in this

case, x ( t) = x0 - gt/k + (g + v0k ) ( 1  - e~~
t)/k2] , reduce properly when k —)0.
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12. Jacobi , “On the theory of the calculus of variations and of differential

equations ”, Crelle ’ s Mathematical Journal 17 ( 1837), referred to in Bolza ’s
Ca ’r.ulus of Variations, p. 56.

13. This relation and similar ones can be simply derived as follows. For any

Lagrangian L in n dimensions and u ~~~~~~~ or we have
(~~/ ‘~~ ) 

~~~~~
L(

~~C ~‘L ~~~~~ ~~~~~~
~~

where ~ = 0 for u = or u = 1 for u = tb and -1 for ii t~, since

~
‘1~

)
~ 

(
~) [ ~.- L /~~-~~~ L~ . Give n that the classical

H a m i l t o n i a n  is H (‘~~ , ~ ,
.
~ 
) (f~ ( ~. ‘)‘ — L ( c~ cj i~)

this gives the follow ing 4 relations of Hamilton—Jacobi theory :

~~~ ~~~~ 
- (~~~ (~~ ~~~~ 

~~~~~~ = ~1~ (- 
~~~~ f~~~~~~~~~~~~~~~ 4)

~~ / ~ (h). (&~) ~~~~ 
- 

~~~~~ - 
(‘

~~~~~~~~ ~~~~ ~~~~~

14. Maurice M. Mizrahi , J. Math . Phys. 19 (1978), 298—307,

15. Maurice M. Mizrahi , J. Math . Phys. 17 (1976), 566—75.

16. Among the specific moments needed are the following:

- 
a)fx

2
~(t)d~(x )  = (2 n ) !  fin in Gn(t, t),2nn !

b)Jx
2(t)x 2(t’)dd(x) = .4~

2 [G(t ,t)G (t ’ ,t ’ )  + 2G2(t,t’)3
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c)fx3( t)x 3(t’)dw(x) = -i1 3 [9G(t ,t)G(t,t’)G(t’,t’) + 6G 3(t ,t ’))

d)fx
2( t)x 4(t~)dw (x) -ifl3 [12G 2(t ,t’)G(t’ ,t’) + 3G(t ,t)G2(t’ ,t’~

e) fx
4( t )x 4(t ’)dw(x) = fl4[9G 2(t,t)G2(t’ ,t’) + 24G 4 (t ,t ’ )

+ 72 G (t,t)G(t’ ,t’)G2(t,t’).

For higher moments , we need a compressed notation . We wri te :

12 q,~ G
2(t1,t2) G(t2,t2) 12 (12)2 (22).

Then ,

f)J~
”

x3(ti)x 3(t 2 )x 4 (t 3 )dw0(X) = 27 (11) (12) (22) (33) 2

+ 18 (12)~ (33) 2 + 72 (31)~ (32) (22)

+ 72 (31) ( 32)~ ( i i )  + 108 (33) (31) (32) (11) (22)

+ 108 (33) (32 )2 ( i i )  (12) + 108 (33) (31)
2 (22) (21)

+ 216 (31)2 (32)2 (12) + 216 (33) (31) (32) (12)
2
.

There are (3+3+4 - 1)!! = 9x7x 5x3 = 945 terms in all

17. J. Mi lnor , Morse Theory, Based on lecture notes by M. Spivak and R. Wel ls .

Princeton University Press , 1969. Annals of Mathematics Studies , No. 51.

18. Bryce S. DeWitt, Dynamical Theory of Groups and Fields. New York : Gordon

and Breach . 1965.

19. C. DeWitt—Morette , in Long-Term Predictions in Dynamics, edited by V.

Szebehely and B. D. Tapley , Dordrecht: 0. Reidel , 1976 , pp. 57-65 ; also pp.

67-70 (with Pete Tschumi).
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APPENDIX A —- THE SMALL-DISTURBANCE EQUATION

This appendix will derive and generalize some results used in the text

on the equation of small disturbances . The latter , resulting from the second

variation of the action functional , is satisfied by the variation in a classical

path resulting from a small change in the boundary conditions . For example , let

S[q) = S ~ ~ (u)1 be an action functional. Each path q (~ 
(u) is characterized

by a parameter U: q(t) = /~ 
(u) ( t )  /? (u,t). If the set ~ y~ 

(u)~j  is a set

of classical paths ~ q~(u)~ labeled by a parameter u (say a constant of

integration), then S’ 
~ ~ 

(u)~ = 0 by definition of 
~ 
(u). If we differen-

tiate with respect to u, we get:

I,

This is the small-disturbance equation with its explicit solution in terms of

the classica l pcith : S”L (3 (u)] (second functiona l derivative of the action

evaluated at the classical path) yields the small-disturbance operator; )/~~~~A

is its exp licit solution , called a Jacobi field along the classical path /3 (u).

Thus , the derivative of a classical solution with respect to a constant of in—

• tegration is a solution of the small—disturbance equation. No te that if S is

derived from a Lagrangi an which does not contain the time explicitly, and we take

the time derivative of the differential equations resulting from S’ ~ f3 (u)] 0,

we find that the classical velocity ~~P~ -~
) ( L ) /  is also a solution of (Al) .

This method of “variation through geodesics” was studied extensively by

J. Milnor 17. The approach was generalized by C. DeWitt_ Morette 6C for arbitra ry

action functiona ls , and independently by the author 1for Lagrangian actions . This

method of generating solutions of (Al) was known to Jacobi 12 .

- 5 .
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Lagrangian Action

Let us consider the Lagrangian action in n dimension s as a specif ic example:

~ tIJ £f L

to~
One can show by stra ightforward differentiation wi th respect to u that

the linear mapping S’[f~(u )~ maps x into

t~
5’[j~(~))x :J [ ~ (~ ) ] (

~
) (~-) ,Jj -

to.. 7 f ~N M2)

if x(tb) X( t a
) = 0 and there are no discontinu ities in the momentum

oL /b~
1 . Differentiating once more with respect to u yiel ds :

/

~~~ (~~ ÷C~ ft)~~~ ~ P~~ t)) x~~ ) a~) ( )
where

(4) A .. 
~~ ~ _ _ _  

a. (
— 

~ft ~~~~~~~

(6) ‘8.. ft) V L 
_ _ _  

ci 
( 

‘

~~~~ L
r
~~~~~4.

(c) C~~(~j — _ _ _ _ _ _ _

(~1 4)

-- 
- - - —5- - - -~~~~~~~~~~
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Note that the above matri ces satisfy the relations :

B + B = 2 C  A - A = B - C = ½ (~~-I),

We assume tha t C( t ) , the Jacobian of the transformation from the

~‘s to the p ’s, neve r van i shes , so that a canonical formalism exists .

If ~ (u) is a family of classical paths 
~~ 

then both sides

of (A2) and (A3) are zero for all x(t):

- L o (A~ )

F ~~~ 
dt k’~c~! ~~~

- 

- 

~ ~~~~
- + C~(t) ~ (A ~ )

The fi rs t equation is the familiar Euler—La grang e equation , yielding the
classical solutions q~(t~u) where u is any of the 2n constants of integration ,

or any other parameter (e.g. ta or tb ) .

The second equation is the small-disturbance equation , and the bracketed

second—order linear differential operator is the (Hermitian) small—disturbance

operator. It is solved by ?q~(t,u)/~)u.

Attempts at solving (A6) by “frontal assault” are sometimes found in the

literature (see, e.g., Reference 8), and usually yiel d only approximate solu-

tions, if any at all .

A convenient set of solutions is obta~i ned by usi ng endpoint boundary conditions :

(t1
~ 

(
~~
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Thus , for any fixed ~ i ,i’~ = 
~~~~~~~~~ the two sets:

• (1:) _______ (J~~
(4) 

~~~~~
l)

are sets of solutions of (A6) satisfying the obvious boundary conditions :

~~~~
) (f ~) = 

~~~
(
~

) 
(
~~)

0 -

We can use these solutions as building blocks for other solutions ,

which can usually be written as linear combinations of them.

Two other sets of solutions can be obtained by differenti ating

q~(t) with respect to ta or tb :

_ _ _ _  
~~ _ _ _ _ _ _

They satisfy the bcundary conditions :

~~~
(Fa~~ ~(t~ ) ~~ 

(
~ )

~~ft~) = 0 

5-- 
-.
~~~ .5 - ~~~~~~~~~~~~~~~~~~~~~ 
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Proof. The second and third are obvious since the operations ,

say, “
~~

/b t a” an d “evalua te at tb ” commute. The fi rst and fourth

are more subtle. The fi rst is deri ved as follows :

= f~ 
~~~~~~ ~~~

=

- - 4~J (~~) =

The fourth relation is derived in a similar manner.

Theorem. Let x(t) and y(t) be two solutions of the small disturbance

equat ion ~~~ i n one d imens ion. The i r Wronsk i~n depends on t onl y

through C(t):

W (4) ~ x (4) ~~ 
(
~ 

— x ~ o~ C ~~~~ ~ C
” ({- ), (Al)

where 0< is a constant , and it is assumed that C(t) never vanishes .

If o( # 0, x and y are l inearl y in dependen t .

Proof.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — C  (A ~~i- 3,~)~~÷ C ( A ~~-~-~3~ )x

- i3c ’ (~~~~~ — 13 c ’ w

> W(4)~~

— -5 - - - -  - - 5-- . -55-—- ---55- ----- -5---- —.- —-——-5-.---— -——. ~— ~•5_••.__ — - —  5- — 5 5  - 
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Howeve r, we can see from (Al,) that B = C In one dimension , and the result fol lows.

Green Func tions

We now study the Green functions G’~ (t,t’) of the small-disturbance

opera tor , which satisfy:

{ A~~~) + (~ ) ~ + C ( t )  
~ (~ ~~()

(Ag)
where A , B, and C are given by (A4) for q = 

~~~~~ 
We restrict ourselves to one

dimension.

Theorem

The advanced and retarded Green functions are unique and are given by

(& , U~~: ~~~( f ,~ ) ~ 
a( { ) T h - t ’) (M)

where J(t,t’) is the Jacobi comutator:

?~~
j +) ~~1..

(t’ ) 
— 

?~~~~
‘) 

~ ?)~~
~

:- 
~~ ~ 

(~‘

/ 
( 1~io )

• 

~~~~~~~~ 
(F h)~~~ r f t~) ?~r ( F ,.~ ~~~~~~~~~~~~~~~~~~~

~~~~~~~~~~ 
~~~ ~~~~~ ~?- ô ~’, i~ ’~

and .X~~~ being any two constants of integration. tb in the denominator

can be replaced by ta~
Proof. We look for the most genera] Green function of the

form G ( t,t’) = f(t,t’)Y(t-t’). Upon differentiation , and use of the

fact that x ~‘(x) = - S(x), we have :

I

- . 5 - - —i—.— 
S 
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~ (~,t~~~~-~
’) + ,U,{ ’) ~ (&-t ’) - ç (f- ,t ’) ~( f - ~

’)

- 
~~~~~~~~~~~~~~~~~~~~~ {fl( ~) ÷ C(f)~~~~~~~~~

1] 

G

~ 
Y(~~

-t’i1
~ f~ ,± ’) ÷ ~ (~ _ e ’ ) {~~f l÷2.C(+).~~ 

_ cc~)]p(f ,t’)

where f,1(t ,t’) denotes the derivative with respect to the first argu-

ment, evaluated at (t,t’).

Thus , G is a Green funct ion i f  Dtf(tst’) = 0, i .e.  i f  f( t ,t ’)

Is a homogeneous sol ution in t, and i f the coeffic i en t of the del ta

function at t = t’ is 1. I-f we expand about t t’:

+ ( f - t ’)  f~ (t ,t~ t ~ (&- t ’ ) ’f  
11 f t ,~~) t

the second condition gives the boun dary cond iti ons on f :

f(t,t) = 0, since C( t) * 0

f ,1(t ,t) = c~~~~~~(t ) .

If f( t,t’) is a solution in t, then we can wri te

= (~(f ’ ) ~~~~) +

where x and y are two linearly independent solut ions . If we Insert

55 ~~~~~~~~~~~~~~~~~~~ - 
_ __ _— -5-~— -5-5- —5-—. ---a. - - — -5
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the boundary conditions , and remember (A7 )~, which indicates that ~y — x~ =

•:i(C(ta )C
~
’(t)

~ 
we ha ve :

- 

Y ( F)~~~~ 

~
‘) - ~ . (A ~

)
C ft ~) L ~ ~ - (L ) 

~ ~
Let us choose c~~ (t)/ c - -i1 and ~~~~~~~~~~~~ (4 )/ ~~~~~~~i~~~~~

.

Bt definition of C(t),  C(t a ) —
‘

~~~~~ L / ~ Y (L) — 
~~

- ?~ ~~~~ 
—

so — £ k ~-.’) ~ r ( ! , . Inserti ng this in (All)

we see that f(t,t’) is given by J(t,t’)  in (AlO ). Note that our J(t ,t ’)  is

what Bryce DeWitt18 calls 6 (he defines G by G~ — G , but since his Green

functions are the negative of ours, G = J).

The greatest simplification in J(t,t’ ) as expressed in (A lO) occurs

when the constants of integration are initial (or final) position and

momentum, for exam p l e .
~~ , ~~j 

( ~~~ ~~~ / 
-~~
‘
~~ ‘

~~
‘

~ 

(
~

-
~~

The denominator is then equal to 1, and

.J(~ ~
) ‘ 

~~~~~~ 

~~~~~~ 

~~~ 
) 

~~~~~~~ 9 ( t  (~
~ 

‘
~

This Poisson bracket becomes the commutator [~~ (t ) 1 &(
~~~~~‘) ~~~ (~

. ~ when

the system is quantized , whence the name of the function.

Feynman ’ s Gree n function , which vanishes at ta and tb~ 
can be built from

G and G~ as follows :

, i-~~~~~~~’)/ ~ ~~~~~~~~

(~ 4 
~~~~~~~~~~~~~~~~ ~~~ ~ 

(
~ , t~) ~~~~~~~~~~~~~~~~ (A ~i)

Indeed, it is readily apparent that the additions to G and G~ are homogeneous

- . - 
- _ _ _ _r - -  _____
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solutions , and that G vanishes when t or t’ IS ta or tb~ Another form for G
is shown in the main text (Equation 13).

Particle in a Potential

Let us concentrate on the case of a particle in a potential in one
dimension , with Lagrangian L = - V(q) .  The dynamica l equation is

~~ 
( f ~ ~ ‘V ’ [ c ~~(~~~ C- . (~~~~~3)

The small—disturbance equation is:

• 
— ~~~~~

‘ V ~~~~~~ ~~~~~ 
(A~~~

Consider two linea rly independent solutions of (A 14) , 0 and D, satisfying:

0

~~~~ft~~)~~~~~o 

(A~c)

Their Wronskian W = Dö - DO is constant and equal to -1. D and D depend on tbl
ta l % and ~ through q~(t). The antisymetric Jacobi comutator along the

classica l path q~(t) can be shown to be:

Th~ 
(
~~ - ~~~) NY) - ~~ ~) 

~~~~~~~~

It is obviously a solution of (A14) in both t and t’ .

Classical path in terms of Jacobi fields

~~~~ 
AJ)(i)~~ +~ J~~ )Js ~~

where -L
( Ms)

- — V
t
(~~ ‘T ~~~~~~~~~~ 

~ ‘(c~ )

I _______________
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Proof. 
~~

(t) , being a derivati ve of the classical path , is a solu tion

of the small-disturbance equation , and hence a linear combination of 0 and D:

~1c
(t) = AD(t) + BD(t) . Integrating from ta to t yiel ds :

9 ( F )  
~ J ~ f ~~~~~~ + ci~ ~~~~

L

However , q~(t) is now the solution of a third—order differential equation.

Therefore, we need a thi rd boundary condition , other than q~(t~) = and

= 
~~~~~ 

It is provided by the dynamical equation (A13) eval uated, say,

at tb~ 
This gives A and B. Note that:

4~(L) = A~~~~~~~~)~~~-B~~~~~~fj  (~~ri)

= A . . (Au)
Cri terion for non-existence of a classi cal path -

What must the relatioship between ~~~~~~~~~ be in order for

a classical pi~th q~(t) such that q~(t~) = q.~, q~( t~) = not to

exist? The answer is given in te rms of Jacobi fields . will not

exist if:

v t  (
~~) r~1~~~ c~

~~~ b) 
~~~~~ 

-V ’(
~b)f (s)ds 

~~~~~ 0 } (~~ 9)
This is easily proved by looking at (,A i~~ which gives q~( t ) i n terms

of the Jacobi fields . q~(t) Is infinite if the denoniinato,’ of A is

zero (first condition ) and the numerator of A is nonzero (second con-

dition). That the two forms of the fi rst condition are equivalent can

be seen by differentiating (Ai’p ) with respect to 
~~~~~~ 

On the ri ght

hand side , we get ~~~~~~~~~ = M = lfb(ta)j an d on the

left hand side we get a fraction with denominator (JD(s)ds)
L 

. Thus ,

wheneve r D( ta ) van i shes , fD(s)ds must also vanish. 

‘ :~~~~~~~~~~~~~ A~~~~~~~~~---  - - - -
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For a general discussion of’ these conditions in the context

of caustics and catastrophe theory, see Ref. 19. 
- 

-

Zero Jacobi field. The only Jacobi field vanishing at both

ta and tb is f( t ) = 0 , unl ess

1
~~~~ ~ ) 9b~~~9~~ 

- 

~~ J (~~~20)

in which case f (t) = a’~(t) , where a Is an arbitrary constant.

Proof. It is obtained by writing f(t) = aD(t)+bD(t) and putting in the boundary

conditions. However, I f ’
~
(ta) = 0, we may not have a classical path ,

in which case a Jacobi field is meaningless. Therefore the second con-

dition is necessary to insure that one or more classical paths might

exist.

Example: The harmonic oscillator

We illustrate this with the harmonic oscillator (V(q) =

H The classical path , for arbitrary endpoints , is given by:

~~~~= 
Rb -

~~~~~~~~~ (f-~~)

where I = tb_ta and

(~~~~~ T ) L ~~~+~~~ 
-

= Me 71, ‘~~~~~~~~
- 

~~~~

~ Lt~~
-
~ 

c1~ - 
~~~~~~

It may fa i l to exis t when s in ( t ~iT) = 0 (t he amp li tude becomes

infinite), except whe n q~=q~=O , in which case there is an in f in ite

nunter of

—-4
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The various cases are summarized in Table A ~~.

The Jaco b i fields i n th is case are :

I~ft)= ~~~~~~~~~~~~~
-) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

We can quickl y veri fy all our cri teria. We have :

(~~~ j  D(~)a~ = -

- ~b) f  1~~~~ S - 

~T ( ( - c ~,14~r)

If W I nTl , we have no classical path , unless :

- - V ’( q~)~~~
2(1 - cos~~T) = 0

i.e. if q8 
= and uT 2n~r (yielding one path), or if = = 0,

which implies that V ’ ( q~) = 0 (yielding an infinite number of paths).

Harmonic q q~~~% � o  q =~~~ = O
Oscillator a a

Uni qt~e q (t) ,

exists C
l~~

. 
and is given 

~~~

. q (t) = 0
by (5.89) C.4~~(~~ ,

_ - )  C

q (t) never / .~~~t F~\ Noncountably
L~)T= 2nr ex is t s  y 1  in finite number

c1n(e~’~r) paths given by:

q~(t) =
— q~( t ) never q~( t ) never A sin

~~
(tb-t)(2.v~ti)ir exists 

— 

exists (A arbitrary )

Table A l. Classical Paths for the Harmonic Oscillator (n = . .
1,2,...)

1 _~___ -55 - -_ _ _ _ _ _ _ _ _ _ _ _
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The Ccrimutator_Ftmction

The dynamical 3quat ion (~A i~j can be solved by quadratures : If

we substitute 
~~

( t ) = u , we obtain the energy E ~ mu 2 + V(q~)

const. as a firs t integral. A second integration gives:

~~~/~E-Vx ) 
0 ,

which yields t(q~) rather than q~(t). In order to differentiate the

classical path with respect to the constants of integration (here, the

energy E and the initial position ~~~ 
we will need the im~1licit func-

tion theorem . The latter states essentially that:

~~

This  gives

(a) ~~~ \~~~~~~~ V~9~ )

E — V (9J

(
~~ 

9~ ~~~~~E-V (9~)f [ E - v ~~] ~~

___________ 
~~~~

(c )  
~~~~~~~~~ 

) -

(d) ~ - \/~ [E ~~ V c i~)~

- -- - 5- -  - -- -- 5-- .- - - - - - 5 -~~~~~~~~- - —  - - . 5- - - - - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -  5- 5.55-5~~~5-~~~~~~ _~~~~~~ *~~~~~~~-,~~~~~~~~~~ - . 5 - - —
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(t) ~~~~~ = (
~- ~

) ~~l~~~[ ~~ - V(~~(~~fl~(
~

-
~~~

ot

~~~~~~~~~~~~~~~~~~~~~~~~~~ 
= 0

~L.

Substituting these in (410), we obtain the commutator (here PC 
= mq~, c~4 =

= E):

9c (~ ’)

J( ~~~’)
J [E~~V(~~] 3IL

(~~~~2~~~)
If the consta:i t~ of intcgrati on are initia l posit ion and

momentum and 
~a ’ then -J(t ,t ’) is ~til1 given by (A 2 1) with E re—

placed by p a
2/2m V(q~ ) . Ihis is not a tr~vial statenient (compare

wi th (~ 2~,) 
), as we show be l ow .

~
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Proof. In terms of and p~, the solut ion is

7

(A~~~3)
Then

- - _ _ _

;~~~~~~~~

__ 

~~F/ ~~?~

~~~~~~~~~~~~~~~~~~~~~~~~~

- - 
/~~

-
~~- 

/~~
(/
~

P~ { t~ ~ Vft ~) - V ( ~~) \ f  ~~~~ ~ V (~j V (x~~ ~~

Substituting the above in expression (15) for J , some terms cancel out

and we get the result. The non -triviality of this result is illustrated by the

fact that ~~- ‘~~~ ~ -~ in (A24) is not obta i ned from 
~~ 

/ —

(A21a) by simpl y replacing E by p~ / 2m + V(q~) .
We can give the commutator in terms of the endpoints 

~ 
and 

~~~~~ 
For this

we have:

- -5--

________________________ _ _ _ _ _ _ _ _ _ _ _ _ _ _  ---- --S.- -
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L~ 0

c~ , E) - - 

~~ / ~ E (Azs~
~~~ 

t~-t~ 
-

~~~~~~~~~~ ~~~~~~~~~~~~

that is , E in the fi rst equation is really a function of and

given implici tl y by the second equation . It is no longer an independent

constant of integration ) but i s.  - Thus , we have :

~~ [~~
- V(x)]~~~J ~

= — — 

~~ 
{ 

~~ 
- V ( 

~~

where I E/~~q~ is obtained by using the imp licit function theorem on G:

__ 
= - _____ - 

~ 
f ~~E - V( ~~~~ 

12
j x 1

/~~E~ I V Q
~C~

Finally, 
‘1

___ 
[- V ( )~~~ 

~ ____ 

[ E  V(x ~~

~~ E -  V(9~ ) j  f~ ~~
-v~~~~~~cxx

Similarly, we f i n d :
- It. ~~( -‘Vt / ~b

= ~~~~~~ 
f  {E- v~] a~ / f [

~ 
- 

~j ~t ~
~~~~ L £ - V~ 1) / ‘f
As for the Van Vieck - Morette funct ion M ~~~~~~~~~~~~ we use : 

-~~~~~ —- - - —  5 - --— - -- - 55 - -
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~~~~
—

~~
‘ — 

~~~~~~~~~~~~~~~~~~~~~~~

9 ( i -~~ [~ { E (
~~~ ~~~~ V (~~~j .

This gives :

M=- ~~~~~~~=-~~~~ [E- V~~)j~~~~19 2. w’ I’

i .e. 
/ 

~~M ~ { E - V( ~~\] ~ E- V(~~]~ / J [E- - v~ ] ~~~~~~~.

Finally, the commutator in terms of the endpoints is given by CAb ) with

= and ‘L =

(9~~~IE-v~ 1~~ [j
1~~c~~~~~~~~~~~~~~~

]

~~~

~ I [E-v ~~~~] ~~~~ LE- V(
~~~~~~ ~~~ 

-

- f x ~ E~~
/(
~~ ~J S~ {~~—V (~~ ( A z c )

where ~~~~~~~~ and E(q~.o~) are given implicitly by (A25).

-5-- -— 
5 - —

~~~~~~~
-—~~~ 

—-- -
~~~~
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